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Abstract

Motivation: Expanding our knowledge of small molecules beyond what is known in nature or designed in
wet laboratories promises to significantly advance cheminformatics, drug discovery, biotechnology, and
material science. In-silico molecular design remains challenging, primarily due to the complexity of the
chemical space and the non-trivial relationship between chemical structures and biological properties.
Deep generative models that learn directly from data are intriguing, but they have yet to demonstrate
interpretability in the learned representation, so we can learn more about the relationship between
the chemical and biological space. In this paper, we advance research on disentangled representation
learning for small molecule generation. We build on recent work by us and others on deep graph generative
frameworks, which capture atomic interactions via a graph-based representation of a small molecule.
The methodological novelty is how we leverage the concept of disentanglement in the graph variational
autoencoder framework both to generate biologically-relevant small molecules and to enhance model
interpretability.
Results: Extensive qualitative and quantitative experimental evaluation in comparison with state of the
art models demonstrate the superiority of our disentanglement framework. We believe this work is an
important step to address key challenges in small molecule generation with deep generative frameworks.
Availability: Training and generated data are made available at https://ieee-dataport.org/
documents/dataset-disentangled-representation-learning-interpretable-molecule-generation.
All code is made available at https://anonymous.4open.science/r/D-MolVAE-2799/.
Contact: liang.zhao@emory.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Expanding our knowledge of small molecules beyond what is known in
nature or designed in wet laboratories promises to significantly advance
drug discovery, biotechnology, and material science (Whitesides, 2015).
In-silico molecule design is central to cheminformatics research but

remains challenging (Schneider and Schneider, 2016). Studies estimate
that 1060 drug-like molecules are synthetically-accessible (Reymond
et al., 2012). This size of chemical space is beyond the scope of even
high-throughput wet-laboratory technologies.

A multi-decade journey in cheminformatics research informs us of
several challenges for small molecule generation. The first concerns
the poorly-understood and complex relationship between chemical and
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biological space. Not all molecules in the vast chemical space meet desired
biological/functional properties of interest, such as water soluble, drug-
likeness, and more (Ramakrishnan et al., 2014). Moreover, changes to the
chemical structure to optimize along a biological criterion may worsen
other criteria; the search space that links chemical and biological space
may be rich in with barriers separating neighboring local optima.

Until a decade ago, molecule generation, widely referred to
as computational screening, was dominated by similarity search
methods (Stumpfe and Bajorath, 2011). While conceptually straightforward,
these methods were limited in their ability to generate novel small
molecules. Advances in machine learning expedited progress. Shallow
models were not very effective (Ellman, 1996; Yoshikawa et al., 2018;
Renz et al., 2020; Xue et al., 2019), as they relied heavily on domain insight
to formulate and construct meaningful representations of small molecules.
Due to their inherent ability to learn directly from data, deep generative
models then made a debut. Initial efforts utilized a linear representation
of molecules, known as SMILES (Weininger, 1988), which stands for
“molecular-input line-entry system”. SMILES is a formal grammar that
describes molecules with an alphabet of characters; aromatic and aliphatic
carbon atoms are denoted by ‘c’ and ‘C’, oxygen atoms by ‘O’, single
bonds by ’-’, double bonds by ‘=’, etc. The SMILES representation allows
addressing molecule generation as a string generation problem. Deep
learning methods based on the recurrent neural network (RNN) framework
suddenly became useful (Gómez-Bombarelli et al., 2018; Segler et al.,
2018; Kusner et al., 2017). However, SMILES-based deep models could
generate few valid molecules. In response, later works (Kusner et al., 2017;
Dai et al., 2018) added syntactic and semantic constraints. In other works,
models were guided to generate valid SMILES through active learning,
reinforcement learning, and additional training signals (Janz et al., 2017;
Guimaraes et al., 2017; Janz et al., 2017; Guimaraes et al., 2017). While
some improvements were observed, generating valid molecules remained
challenging.

Graph-generative deep models leverage a more expressive representation
of a molecule via the concept of a molecular graph. The atoms are
represented as vertices and the bonds as edges connecting the vertices.
In deep learning literature, graph-generative models are based on the
variational autoencoder (VAE) (Simonovsky and Komodakis, 2018;
Samanta et al., 2018; Jin et al., 2018; Dai et al., 2018; Blaschke et al.,
2018) or generative adversarial networks (GANs) (Bojchevski et al., 2018;
Guo et al., 2018). For instance, GraphRNN (You et al., 2018) builds an
autoregressive generative model based on a generative RNN that generates
the graph one vertex at a time. In contrast, GraphVAE (Simonovsky and
Komodakis, 2018) represents each graph in terms of its adjacent matrix
and feature vectors of vertices. A VAE model is then utilized to learn the
distribution of the graphs conditioned on a latent representation at the graph
level. Other works (Grover et al., 2019; Kipf and Welling, 2016) encode
the vertices into vertex-level embeddings and predict the edges between
each pair of vertices to generate a graph.

The adoption of graph-generative models for small molecule
generation has been rapid. Current graph generative models for molecule
generation leverage the VAE framework to address two subtasks: (1)
encoding: learning a low-dimensional, latent code/representation of a
molecular graph; (2) decoding: learning to map the latent representation
back into a (reconstructed) molecular graph. For instance, work
in (Simonovsky and Komodakis, 2018) generates molecular graphs by
predicting their adjacency matrices. Work in (Liu et al., 2018a) generates
molecules through a constrained graph generative model that enforces
validity by generating a molecule one atom at a time. These works generate

more valid molecules than SMILES-based models and additionally subject
generated molecules to the sanitization checks in RDKit 1.

Graph-generative VAEs represent a promising platform that we
leverage in this paper, but current graph-generative VAEs for small
molecule generation fall short. The learned latent representation has
all the latent factors entangled which limits the model transparency
and interpretability. Specifically, these models do not facilitate linking
the chemical space to the biological space and so do not advance our
understanding of complex relationship between chemical and biological
space for small molecules. Facilitating this linking is central not only for
molecule generation but also for molecule optimization Alemi et al. (2017),
an important and related task that beyond the scope of this paper.

In this paper we advance research on small molecule representation
learning for molecule generation by disentanglement enhancement.
Disentangled representation learning is an active research area, particularly
in image representation learning (Alemi et al., 2017; Chen et al., 2018;
Higgins et al., 2017a; Kim and Mnih, 2018; Guo et al., 2021) and has been
shown key to improving model generalizability and robustness against
adversarial attacks, and even facilitate debugging and auditing (Alemi
et al., 2017; Doshi-Velez and Kim, 2017). While a comprehensive review
is beyond the scope of this paper, we point to recent approaches that modify
the VAE objective by adding, removing, or altering the weight of individual
terms in the loss function to improve disentanglement (Alemi et al., 2017;
Chen et al., 2018; Esmaeili et al., 2019; Kim and Mnih, 2018; Kumar
et al., 2018; Lopez et al., 2018; Zhao et al., 2019; Guo et al., 2020; Du
et al., 2021a). Currently, however, we do not know the best approach to
learn disentangled representations of graph data. This includes the small
molecule generation domain. In a recent workshop paper (Du et al., 2020),
we demonstrated that learning disentangled representations results in better
molecule generation over methods that do not leverage disentanglement.
However, as our goal was a proof-of-concept demonstration that VAEs for
disentangled representation learning achieve good assessment for small
molecule generation, the study was limited to classic disentanglement and
focused on few datasets of known small molecules of the same size.

Here we propose a graph-generative VAE framework that learns a
disentangled code/representation, so that we may additionally elucidate
how the factors that encode chemical structure control biological
properties. Specifically, we design and evaluate the D-MolVAE
framework, which stands for Disentangled Molecule VAE. The framework
permits various mechanisms for disentanglement, resulting in several
novel deep graph-generative models, which we compare to one another
and many other state-of-the-art methods on benchmark datasets across
several metrics.

Our experiments show that the D-MolVAE framework is effective and
superior at generating valid, novel, and unique small molecules over other
methods. The framework also accommodates variable-size molecules
which improves its scope and applicability. Our experiments additionally
show that disentanglement representation learning is valuable for better
interpretation and understanding of the relationship between the chemical
space and the biological space; the proposed D-MolVAE models are better
able to capture the underlying graph statistics and distributions of various
biological properties.

The D-MolVAE models effectively implement a trade-off between the
disentanglement enhancement and the reconstruction. Our experiments
show that explicit disentanglement enforcement does not hurt
performance. In fact, the models are superior over many methods. Taken
altogether, our findings suggest that the disentangled factors provide an
advantage with respect to the quality of generated molecules, as well as
the linking of the chemical and biological space. Our experiments suggest

1 RDKit: Open-source cheminformatics; http://www.rdkit.org
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several models as promising platforms for further exploring disentangled
representations for improving small molecule generation.

2 Methods
We first define and formalize the problem. Then we describe the graph-
generative models based on VAE framework, namely D-MolVAE, focusing
the description on the variants of disentanglement terms proposed to obtain
different disentangled graph-generative VAE models.

2.1 Problem Formulation

Let us represent a molecule as a graph G = (V, E, E, F ). The N atoms
of the molecule constitute the N vertices V of graph G. The M bonds
connecting pairs of atoms in the molecule constitute the edges E ⊆ V×V ,
where ei,j ∈ E is an edge connecting vertices vi ∈ V and vj ∈ V .
G = (V, E, E, F ) also contains E and F . E ∈ RN×N×K is the edge
type tensor that records the K bond types. Specifically, Ei,j ∈ R1×K

is an one-hot vector encoding the type of edge ei,j . F ∈ RN×K′
is the

vertex type feature matrix that records the K′ atom types. Specifically,
Fi ∈ R1×K′

is the one-hot encoding vector denoting the type of atom vi.
The objective in graph generative disentangled representation learning

is to learn the joint distribution of G and a set of generative disentangled
latent factors/variables Z ∈ RN×L, such that the observed graph G

can be generated as p(G|Z). Note that L is the dimensionality of the
latent factors. Disentanglement denotes the additional constraint that the
individual variables in Z be independent from one another.

2.2 D-MolVAE Framework

Two challenges present themselves with the above formulation: (1) how
to integrate the disentanglement constraint and the reconstruction quality
constraint in the loss function that guides learning; (2) how to efficiently
encode and decode molecules/graphs of different sizes. We first show
how the first challenge is addressed in the D-MolVAE framework via
a generative objective function. We show in this context that different
approaches here can result in different models. Then we show how
the second challenge is addressed via variable-size edge-to-edge and
edge-to-vertex convolution operators in D-MolVAE.

We are inspired by disentanglement representation learning in the
image domain (Higgins et al., 2017a), where a suitable objective in learning
p(G|Z) is to maximize the marginal (log-)likelihood of the observed
graph G in expectation over the whole distribution of latent variables
set Z ∈ RN×L as maxθ Epθ(Z)[pθ(G|Z)], where θ allows explicitly
denoting the parameters characterizing this distribution.

Learning pθ(G|Z) requires the inference of its posterior pθ(Z|G),
which is intractable. So, one defines instead an approximated posterior
qϕ(Z|G) that is computationally tractable. In disentangled representation
learning, one needs to additionally ensure that the inferred latent variables
Z from qϕ(Z|G) capture all the generative factors in a disentangled
manner. This is achieved by introducing a constraint to match qϕ(Z|G)

to a well-disentangled prior p(Z) that controls the capacity of the
latent information bottleneck and embodies the statistical independence
mentioned above. An isotropic unit Gaussian suffices; that is, p(Z) =

N (0, I), where I is an N×N identity matrix. This leads to the following
constrained optimization problem:

max
θ,ϕ

EG∼D[Eqϕ(Z|G)logpθ(G|Z)] (1)

s.t. DKL(qϕ(Z|G)||p(Z)) ≤ ϵ.

In the above equation, D refers to the observed set of graphs
(corresponding to molecules in the training dataset), DKL(·) is
the Kullback–Leibler divergence (KLD) that allows comparing two

probability distributions, and ϵ is a parameter that specifies the strength of
the applied constraint; that is, ϵ allows weighting how much we want the
disentanglement constraint to be enforced.

Unfortunately, the above constraint formulated to achieve disentanglement
is intractable. So, an aggregate objective (loss) function is formulated
instead, where the above constraint and the reconstruction error in a VAE
are combined together as in:

max
θ

Epθ(Z)[logpθ(G|Z)]− βDKL(qϕ(Z|G)||p(Z)) (2)

This aggregation is similar to the beta-VAE (Higgins et al., 2017b) that
first introduced the notion of disentanglement (though not for graph data).
Note that β weighs how important it is to enforce the disentanglement
constraint. Specifically, when β = 1, one obtains a vanilla VAE (Kingma
and Welling, 2013). We direct the interested reader to work in (Higgins
et al., 2017b) to understand the effects of β.

2.3 Disentanglement-enhanced Models

By considering different approaches to enforce disentanglement, we
obtain different instantiations of our D-MolVAE framework, namely, D-
MolVAE-V, D-MolVAE-β, D-MolVAE-DIP-I, D-MolVAE-DIP-II, and
D-MolVAE-VIB.

D-MolVAE-V: We extend the previous work on disentangled
variational auto-encoders (Kingma and Welling, 2013; Esmaeili et al.,
2019) into that for graph-structured data, as follows:

L(θ, ϕ,G, Z, β) = −DKL(pθ(Z,G)||qϕ(G,Z))

= Eqϕ(Z,G)[log
pθ(G,Z)

pθ(G)p(Z)
+ log

q(G)qϕ(Z)

qϕ(G,Z)
+ log

pθ(G)

q(G)
+ log

p(Z)

qϕ(Z)
]

= Eqϕ(Z,G)[log
pθ(G|Z)

pθ(G)︸ ︷︷ ︸
1⃝

− log
qϕ(Z|G)

qϕ(Z)︸ ︷︷ ︸
2⃝

]

−DKL(q(G)||pθ(G)))︸ ︷︷ ︸
3⃝

−DKL(qϕ(Z)||p(Z))︸ ︷︷ ︸
4⃝

(3)

In the above, terms 3⃝ and 4⃝ enforce consistency between the
marginal distributions over G and z. Specifically, minimizing the KLD in
term 3⃝ maximizes the marginal likelihood Eq(G)logpθ(G); maximizing
the disentangled inferred priors term 4⃝ enforces the distance between
qϕ(Z) and p(Z). Terms 1⃝ and 2⃝ enforce consistency between the
conditional distributions. Specifically, term 1⃝ maximizes the correlation
for each Z that generates each Gn; when Z ∼ qϕ(Z|Gn) is sampled,
the likelihood pθ(G

n|Z) should be higher than the marginal likelihood
pθ(G

n). Meanwhile, term 2⃝ regularizes term 1⃝ by minimizing the
mutual information I(Z,G) in the inference model.

The D-MolVAE-V objective is defined as:

L(θ, ϕ,G, Z, β) = Eqϕ(Z,G)[log
pθ(G|Z)

pθ(G)︸ ︷︷ ︸
1⃝

− log
qϕ(Z|G)

qϕ(Z)︸ ︷︷ ︸
2⃝

]

−DKL(q(G)||pθ(G)))︸ ︷︷ ︸
3⃝

−DKL(qϕ(Z)||p(Z))︸ ︷︷ ︸
4⃝

(4)

D-MolVAE-β: The penalty term β > 1 has proven useful to
enforce the disentanglement of the latent variables without worsening
reconstruction performance (Higgins et al., 2017a). We emphasize that
β allows balancing between reconstruction loss and KLD loss. So, our
first model that introduces disentanglement for graph-based representation
learning for small molecule generation is D-MolVAE-β. Its objective is
similar to D-MolVAE-V. The only difference concerns the weighted KLD
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terms 1⃝+ 3⃝+ β( 2⃝+ 4⃝) as follows:

L(θ,ϕ,G, Z, β) = Eqϕ(Z,G)[log
pθ(G|Z)

pθ(G)︸ ︷︷ ︸
1⃝

]−DKL(q(G)||pθ(G)))︸ ︷︷ ︸
3⃝

− β(Eqϕ(Z,G)[log
qϕ(Z|G)

qϕ(Z)︸ ︷︷ ︸
2⃝

]−DKL(qϕ(Z)||p(Z))︸ ︷︷ ︸
4⃝

) (5)

D-MolVAE-DIP-I: It is important to note that term 2⃝ may lead to
poor reconstruction, when the disentanglement is heavily enforced by
setting high values for the β parameter. To address this, the ’Disentangled
Inferred Prior Variational Autoencoders’ (DIPVAE) mode introduces a
hyperparameterλ in term 4⃝ (Kumar et al., 2018). This term is also referred
to as the ’inferred priors’ term and enforces the distance between qϕ(z) and
p(z). The hyperparameter allows controlling the the trade-off between the
reconstruction loss and the KLD term. We incorporate this idea to obtain
D-MolVAE-DIP-I, whose objective function is now 1⃝+ 2⃝+ 3⃝+λ 4⃝,
as in:

L(θ, ϕ,G, Z, β) = Eqϕ(Z,G)[log
pθ(G|Z)

pθ(G)︸ ︷︷ ︸
1⃝

− log
qϕ(Z|G)

qϕ(Z)︸ ︷︷ ︸
2⃝

]

−DKL(q(G)||pθ(G)))︸ ︷︷ ︸
3⃝

−λDKL(qϕ(Z)||p(Z))︸ ︷︷ ︸
4⃝

(6)

D-MolVAE-DIP-II: Note that the 2⃝ term represents the mutual
information I(Z,G) between the latent representationZ and the molecule
G, which may lead to poor reconstruction. An alternative approach to
balance between disentanglement and reconstruction is to discard term
2⃝, thus obtaining DIPVAE-MolVAE-II, whose objective function now is:

L(θ, ϕ,G, Z, β) = Eqϕ(Z,G)[log
pθ(G|Z)

pθ(G)︸ ︷︷ ︸
1⃝

]−DKL(q(G)||pθ(G)))︸ ︷︷ ︸
3⃝

− λDKL(qϕ(Z)||p(Z))︸ ︷︷ ︸
4⃝

(7)

D-MolVAE-VIB: The Variational Information Bottleneck (VIB)
approach interprets the capacity of the KLD as the information bottleneck
of the network (Alemi et al., 2017). It proposes to add a controllable value
C and a hyperparameter γ over the KLD term to control the information
flowing through it. Later work demonstrates that by slowly increasing
the value of C, the latent representation is able to gradually capture the
semantic factors (Locatello et al., 2018). Inspired by these works, we
obtain our final model D-MolVAE-VIB, whose objective function is:

L(θ, ϕ,G, Z, β) = Eqϕ(Z,G)[log
pθ(G|Z)

pθ(G)︸ ︷︷ ︸
1⃝

]−DKL(q(G)||pθ(G)))︸ ︷︷ ︸
3⃝

− γ|Eqϕ(Z,G)[log
qϕ(Z|G)

qϕ(Z)︸ ︷︷ ︸
2⃝

]−DKL(qϕ(Z)||p(Z))︸ ︷︷ ︸
4⃝

−C| (8)

2.4 Implementation Details

The variants are summarized in terms of their objectives in Table 1. The
encoder and decoder architecture are summarized in Table 2. Finally, the
hyperparameters used for training are related in Table 3. The rows refer
to the different benchmark datasets, which we describe in Section 3. We
observe that increasing β leads to a better disentangled representation, as
later shown in Table 7.

Table 1. Summary of D-Mol-VAE variants in terms of their disentanglement
objectives.

Model Objectives
D-MolVAE-V 1⃝ + 2⃝ + 3⃝ + 4⃝
D-MolVAE-β 1⃝ + 3⃝ + β( 2⃝ + 4⃝)

D-MolVAE-DIP-I 1⃝ + 2⃝ + 3⃝ + λ 4⃝
D-MolVAE-DIP-II 1⃝ + 3⃝ + 4⃝
D-MolVAE-VIB 1⃝ + 3⃝ + γ 2⃝ + 4⃝ + C

Table 2. Encoders and decoders architectures. Each layer is expressed in the
format as < kernel_size >< layer_type >< Num_channel ><

Activation_function >< stride_size >. FC refers to the fully
connected layers).

Encoder Decoder
Input: G(V, E, E, F ) Input[z] ∈ R100

FC.100 ReLU FC.100 ReLU
GGNN.100 ReLU GGNN.100 ReLU
GGNN.100 ReLU GGNN.100 ReLU
FC.100 FC.bv (batch node size) FC.3 (edge)

Table 3. Hyperparameters used for training.

Dataset Learning_rate Batch_size λ Num_iteration
QM9 5e-4 64 1 10
ZINC 5e-4 8 1 5
MOSES 5e-4 4 1 5
CHEMBL 5e-4 4 1 5

3 Results

3.1 Datasets and Experimental Setup

We employ four benchmark datasets: QM9, ZINC, MOSES, and
ChEMBL (Du et al., 2021b). QM9 (Ramakrishnan et al., 2014; Ruddigkeit
et al., 2012) contains around 134k stable small organic molecules with up to
9 heavy atoms (e.g. Carbon (C), Oxygen (O), Nitrogen (N) and Fluorine
(F)). ZINC (Irwin et al., 2012) contains approximately 250K drug-like
chemical compounds with an average of 23 heavy atoms. The molecules
in this dataset are more complex than in QM9. MOSES (Polykovskiy
et al., 2020) contains about 1.9M larger molecules with up to 30 heavy
atoms. ChEMBL (Gaulton et al., 2017) contains about 1.8M manually-
curated bioactive molecules with drug-like properties. For QM9, we use the
entire dataset, while for ZINC, MOSES, and ChEMBL which have larger
molecules, we randomly sample 70k molecules from the entire dataset,
and split into 6 : 1 for training and validation. During testing, we generate
30k molecules for our experiments.

We utilize qualitative and quantitative experiments that evaluate
the proposed D-MolVAE-V, D-MolVAE-β, D-MolVAE-DIP-I, D-
MolVAE-DIP-II, and D-MolVAE-VIB. The models are pitched against
9 state-of-the-art deep generative models for molecule generation:
ChemVAE (Gómez-Bombarelli et al., 2018), GrammarVAE (Kusner
et al., 2017), GraphVAE (Simonovsky and Komodakis, 2018),
GraphGMG (Li et al., 2018), SMILES-LSTM (Sundermeyer et al.,
2012), GraphNVP (Madhawa et al., 2019), GRF (Honda et al., 2019),
GraphAF (Shi et al., 2019), and CGVAE (Liu et al., 2018b). In the interest
of brevity, summaries of the main computational ingredients in each of
these models are related in the Supplementary Material. All experiments
are conducted on a 64-bit machine with a 6 core Intel CPU i9-9820X,
32GB RAM, and an NVIDIA GPU (GeForce RTX 2080ti, 1545MHz,
11GB GDDR6).
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3.2 Evaluating the Quality of Generated Molecules

Table 4 relates the comparative analysis. Each trained model is
used to generate 30k molecules. For GraphGMG, we obtain 20K
generated molecules from the GraphGMG authors. Results for ChemVAE,
GrammarVAE, GraphVAE, and SMILES-LSTM are obtained from (Liu
et al., 2018b). The quality a generated dataset is evaluated via the 3

common metrics of Novelty, Uniqueness, and Validity. Novelty measures
the fraction of generated molecules that are not in the training dataset.
Uniqueness measures the fraction of generated molecules after and before
removing duplicates. Validity measures the fraction of generated molecules
that are chemically valid.

Table 4. Novelty, uniqueness, and validity, shown in %, are measured on a
generated dataset. The highest value achieved on a metric is highlighted in
boldface.

Model
QM9 ZINC

Validity Novelty Unique Validity Novelty Unique
ChemVAE 10.00 90.00 67.50 17.00 98.00 30.98

GrammarVAE 30.00 95.44 9.30 31.00 100.00 10.76
GraphVAE 61.00 85.00 40.90 14.00 100.00 31.60
GraphGMG - - - 89.20 89.10 99.41

SMILES-LSTM 94.78 82.98 96.94 96.80 100.00 99.97
GraphNVP 90.10 54.00 97.30 74.40 100.00 94.80

GRF 84.50 58.60 66.00 73.40 100.00 53.70
GraphAF 100.00 88.83 94.51 100.00 100.00 99.10
CGVAE 100.00 96.33 98.03 100.00 100.00 99.95

D-MolVAE-V 100.00 96.10 99.15 100.00 100.00 99.95
D-MolVAE-β 100.00 95.35 96.62 100.00 100.00 99.72

D-MolVAE-DIP-I 100.00 97.36 97.80 100.00 99.99 99.88
D-MolVAE-DIP-II 100.00 98.31 72.36 100.00 100.00 51.42
D-MolVAE-VIB 100.00 95.85 98.66 100.00 100.00 99.18

Table 5. Novelty, uniqueness, and validity, shown in %, are measured on a
generated dataset. The highest value achieved on a metric is highlighted in
boldface.

Model
MOSES CHEMBL

Validity Novelty Unique Validity Novelty Unique
CGVAE 99.97 99.97 95.33 100.00 99.97 99.85

D-MolVAE-V 100.00 100.00 99.70 100.00 100.00 14.85
D-MolVAE-β 100.00 100.00 99.73 100.00 100.00 99.35

D-MolVAE-DIP-I 100.00 100.00 100.00 100.00 100.00 99.96
D-MolVAE-DIP-II 100.00 100.00 56.53 100.00 100.00 99.93
D-MolVAE-VIB 100.00 100.00 100.00 100.00 99.97 99.88

Table 4 allows making several observations. ChemVAE, GrammarVAE,
and GraphVAE have the lowest performance. The D-MolVAE models
achieve superior performance over the other models. In particular, all
D-MolVAE models achieve 100% on validity on all datasets. Similar
performance is observed on uniqueness, as well. Varied performance
is observed on novelty, though all D-MolVAE models consistently
outperform or match the performance of the other models; CGVAE is the
only other model with a consistently good performance across all metrics
on all datasets. This is not surprising, as our proposed models build over
the CGVAE architecture but additionally enforce disentanglement. The
explicit disentanglement enforcement seems to provide some benefits on
higher novelty, in particular, on the QM9 dataset, over CGVAE. Taken
altogether, these results suggest that the disentanglement enforcement does
not reduce and actually improves performance; adding the disentanglement

regularization does not influence the reconstruction error and so does not
sacrifice the quality of generated molecules. It is worth noting that some
of the proposed models, such as D-MolVAE-DIP-I and D-MolVAE-DIP-
II, generate more novel molecules. Between the two, D-MolVAE-DIP-II
generates more novel (nearly 100%) yet less unique (50%-70%) molecules
due to the stronger constraint exerted by the KL Divergence term. In
Table 5, we further evaluate the performance of our proposed methods
and the strongest baseline, CGVAE, on two new datasets, MOSES and
ChEMBL. In MOSES dataset, all the model achieve 100% validity and
novelty, while D-MolVAE-VIB and D-MolVAE-DIp-I perform also 100%
unique.In CHEMBL dataset, all the models achieve a comparable result
except D-MolVAE-V on Unique.

3.3 Comparing the Learned Distribution to the Training
Distribution

Given the above results, we now focus the comparison of our models
against CGVAE. We measure the distance between the generated and the
training datasets in terms of molecular properties and graph statistics, as
shown in Table 6, utilizing two popular metrics, the Maximum Mean
Discrepancy (MMD) (You et al., 2018) and KL Divergence (KLD) (You
et al., 2018). MMD is used when comparing distributions of graph
statistics, and KLD is used when comparing distributions of molecular
properties; the molecular properties of interest are selected due to their low
correlation, which is ideal for the disentanglement experiment setting that
requires independent semantic factors. The correlation heatmap between
commonly used molecular properties evaluated in QM9 dataset is shown
in Figure 1. All these statistics are described in detail the Supplementary
Material, where we also draw randomly-selected QM9 molecules over the
generated dataset for each of the models.

In Table 6, the smaller the value, the more similar the generated set is
to the training set on a property under comparison. Table 6 shows that all
models reasonably preserve the distributions of properties in the training
set. In comparison with CGVAE, our D-MolVAE models preserve more
on the ZINC and MOSES dataset while less on the QM9 dataset. However,
our models consistently perform well on all four datasets. The only dataset
where CGVAE performs better than any of our models on about half
of the properties (4/9) is on the QM9 dataset. CGVAE also performs
comparably on KLD to at least one of our models on the CHEMLB
dataset, but it is outperformed on MMD. On both the ZINC and the MOSES
datasets, our models outperform CGVAE. In particular, D-MolVAE-VIB
performs consistently well across all four datasets. The KLD between the
training and the generated datasets are small, and this is further confirmed
visually by plotting the distributions of the molecular properties cLogP,
cLogS, PSA, rPSA and Drug-likeness for each model in Figures 2-7 in the
Supplementary Material. These results make clear that our D-MolVAE
models capture well the distributions of the molecular properties in the
training dataset.

Altogether, these results suggest that the proposed models capture
the underlying property distribution of the training dataset. Overall, all
models balance well between information preservation and novelty in
the generated molecules. Among all our D-MolVAE models, it is easily
observed that D-MolVAE-VIB outperforms all the others along most
metrics. Interestingly, even though disentanglement-enhanced models
do not outperform the baselines in terms of capturing the synthesis
accessibility (SA) score distribution, they generate novel molecules
with higher SA score, e.g. MolVAE-VIB. This observation actually
demonstrates the exploration power of the disentangled models and
the better trade-off they allow us to achieve between exploration and
exploitation. It is worth noting that one can choose over the disentangled
models and the base models by preferences of exploration or exploitation.



6 Yuanqi et al.

Table 6. Comparing the difference between the training and generated distributions of
graph properties via MMD and KLD. We abbreviate D-MolVAE by Mol, DIP by D,
Degree by Deg, Clustering Coefficient by Coeff, Drug-likeness by Drug, and Rel PSA
by RPSA. The best value per row is in boldface.

Dataset Metric CGVAE Mol-V Mol-β Mol-DI Mol-DII Mol-VIB

QM9

MMD(Deg) 0.0167 0.0258 0.0541 0.0838 0.0238 0.0232
MMD(CC) 0.0097 0.0051 0.0259 0.0175 0.0095 0.0045

MMD(Orbit) 0.0018 0.0210 0.0021 0.0079 0.0031 0.0017
KLD(cLogP) 0.08 0.41 0.44 0.35 0.46 0.01
KLD(cLogS) 0.06 0.27 0.26 0.18 1.23 0.13
KLD(Drug) 0.07 0.15 0.08 0.18 0.22 0.04
KLD(RPSA) 0.04 0.29 0.11 0.18 0.51 0.04
KLD(PSA) 0.03 0.07 0.07 0.30 0.09 0.03
KLD(SA) 0.44 0.21 0.50 0.89 0.16 0.20

ZINC

MMD(Deg) 0.0023 0.0005 0.0043 0.0034 0.7962 0.0111
MMD(CC)) 0.0013 0.0002 0.0013 0.0005 0.0316 0.0363
MMD(Orbit) 0.0005 0.0731 0.0001 0.0001 0.0001 0.0006
KLD(cLogP) 0.67 0.59 0.09 0.67 0.30 0.23
KLD(cLogS) 0.74 0.04 0.09 0.74 0.58 0.10
KLD(Drug) 1.29 1.63 0.97 1.29 1.52 0.01
KLD(RPSA) 0.78 0.47 0.31 0.79 1.17 0.08
KLD(PSA) 0.56 0.06 0.14 0.59 0.01 0.12
KLD(SA) 0.56 0.75 0.79 0.76 2.29 0.82

MOSES

MMD(Deg) 0.0052 0.0032 0.0031 0.0220 0.4520 0.0024
MMD(CC)) 0.0003 0.0027 0.0004 0.0005 0.0000 0.0002
MMD(Orbit) 0.0009 0.0013 0.0002 0.0006 0.0217 0.0005
KLD(cLogP) 0.47 0.01 0.96 0.12 0.37 0.25
KLD(cLogS) 0.22 0.21 0.17 1.01 0.50 0.16
KLD(Drug) 0.35 0.56 0.84 1.41 0.33 0.48
KLD(RPSA) 0.04 0.01 0.18 0.93 0.97 0.05
KLD(PSA) 0.07 0.22 0.36 0.71 0.58 0.07
KLD(SA) 1.57 1.76 1.85 1.25 3.57 1.09

CHEMBL

MMD(Deg) 0.0028 0.6634 0.0022 0.0015 0.0013 0.0025
MMD(CC)) 0.0002 0.0010 0.0004 0.0001 0.0002 0.0001
MMD(Orbit) 0.0004 0.0424 0.0010 0.0002 0.0002 0.0004
KLD(cLogP) 0.03 0.05 0.31 0.04 0.04 0.03
KLD(cLogS) 0.04 0.04 0.05 0.04 0.04 0.04
KLD(Drug) 0.01 0.01 0.02 0.02 0.02 0.01
KLD(RPSA) 0.01 0.02 0.01 0.01 0.01 0.01
KLD(PSA) 0.23 0.24 0.25 0.24 0.25 0.23
KLD(SA) 0.07 0.08 0.09 0.08 0.08 0.08

Table 7. Evaluation of disentanglement across all top
models on each of the datasets. ↑ indicates that a higher
value on a metric is better.

Dataset Model β-M(%)↑ F-M(%)↑ DCI↑ Mod↑

QM9

CGVAE 100 57.0 0.055 0.239
Mol-V 100 50.0 0.019 0.233
Mol-β 100 56.0 0.0466 0.223
Mol-DI 100 61.2 0.023 0.261
Mol-DII 100 62.0 0.0972 0.241
Mol-VIB 100 72.0 0.1282 0.243

ZINC

CGVAE 100 48.0 0.011 0.195
Mol-V 100 44.0 0.016 0.163
Mol-β 100 52.0 0.016 0.151
Mol-DI 100 52.4 0.010 0.197
Mol-DII 100 50.0 0.019 0.188
Mol-VIB 100 58.0 0.036 0.189

MOSES

CGVAE 100 38.0 0.059 0.184
Mol-V 100 44.0 0.060 0.189
Mol-β 100 46.0 0.061 0.186
Mol-DI 100 58.0 0.062 0.209
Mol-DII 100 50.0 0.071 0.212
Mol-VIB 100 54.0 0.078 0.253

CHEMBL

CGVAE 82.0 61.3 0.181 0.500
Mol-V 80.0 62.0 0.202 0.499
Mol-β 82.6 62.3 0.219 0.491
Mol-DI 84.0 62.0 0.209 0.481
Mol-DII 80.0 64.0 0.213 0.456
Mol-VIB 85.3 64.6 0.183 0.504

3.3.1 Quantitative Evaluation of Disentanglement Learning
Table 7 relates the evaluation of our models’ disentanglement scores
via β-M, F-M, MOD, and DCI, which are four popular metrics to
evaluate disentanglement. Briefly, β-M (Higgins et al., 2017a) measures
disentanglement by examining the accuracy of a linear classifier that
predicts the index of a fixed factor of variation. F-M (Kim and Mnih,
2018) addresses several issues by using a majority voting classifier on a
different feature vector that represents a corner case in the β-M. The β-M
and F-M metrics are formulated as follows:

x1,1, x2,1, · · · , x1,L, x2,L ∼ (fk ∪N (0, 1)) (9)

z1,1, z2,1, · · · , z1,L, z2,L = p(z|x)(x1,1), p(z|x)(x2,1), · · · , (10)

p(z|x)(x1,L), p(z|x)(x2,L), (11)

zdiff =
1

L

L∑
l=1

|z1,l − z2,l|, (12)

β −M = p(k|zdiff ), (13)

F −M = p(k| argmin
d

V ar
l

zdl /σd), (14)

MOD (Ridgeway and Mozer, 2018) measures whether each latent
variable depends on at most a factor describing the maximum variation

using their mutual information. We first calculate the mutual information
between the latent representations and the values of the factors of variation
in a matrix m. Then, we compute a vector ti for each dimension
of representation i. Finally, we average over the dimensions of the
representation with N factors, as follows:

ti,f =

{
θi if f = argmaxg mi,g

0 otherwise
(15)

MOD =
1

I

∑
i

1−
∑

f (mi,f − ti,f )
2

θ2i (N − 1)
(16)

DCI (Eastwood and Williams, 2018) computes the entropy of the
distribution obtained by normalizing the importance of each dimension of
the learned representation for predicting the value of a factor of variation.
For DCI, we first take the importance weights for each factor by fitting
gradient boosted trees and form an importance matrixR. We then compute
the relative importance of each dimension ρi and disentanglement score
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DCI as follows:

ρi =

∑
j Rij∑
ij Rij

(17)

DCI =
∑
i

ρi(1−H(Ri)) (18)

All implementation details are as in (Locatello et al., 2018).
Table 7 shows that our models achieve the best overall disentanglement

scores over CGVAE. Specifically, on the QM9 dataset with smaller
molecules, D-MolVAE-DIP-I, D-MolVAE-DIP-II, and D-MolVAE-VIB
achieve F-M scores of 61.2%, 62.0%, 72.0%, respectively, whereas
CGVAE achieves only 57.0%. All models achieve comparable MOD
scores, with D-MolVAE-DIP-I achieving the the highest. All models
achieve a β−M of 100%. D-MolVAE-VIB outperforms all others on the
DCI score, and this observation holds across all four datasets. Interestingly,
all models perform worse on the ZINC dataset, which contains larger
molecules than the QM9 dataset. Similarly, on the MOSES dataset, all the
models perform worse than on QM9 but better than on ZINC. Specifically,
D-MolVAE-DIP-I and D-MolVAE-VIB rank as the top two on the F −M

metrics, and D-Mol-VAE achieves the best performance on the DCI and
Mod metrics, with an up to 16% improvement over the second best
model, D-MolVAE-DIP-II. On the CHEMBL dataset, D-MolVAE-DIV
performs the best across the β −M , F −M , and Mod metrics. D-Mol-
DIP-I achieves the second in β − M (84.0%), while CGVAE performs
only 82.0%. Nevertheless, D-Mol-β performs slightly better over D-Mol-
DII on the DCI metric which achieves the best performance. Altogether,
these results show that the proposed disentanglement-enhanced models
improve the ability of a model for disentanglement learning, especially for
D-MolVAE-VIB.

3.3.2 Relating Disentangled Factors to Molecular Properties
In Figure 1 we show how the learned disentangled factors relate to the
biological properties computed on each generated molecule. The mutual
information is calculated between each of the disentangled factors learned
by CGVAE and the D-MolVAE models and the molecular properties
computed on generated molecules. We focus the comparison here to the
MOSES-trained CGVAE and D-MolVAE-VIB models but show all models
on all datasets in the Supplementary Material.

Figure 1 clearly show that the factors learned by CGVAE relate
weakly with the molecular properties. Such relationship is stronger on
the disentangled factors learned by our D-MolVAE models, even though
all models are unsupervised. Moreover, different disentangled factors from
D-MolVAE-VIB tend to more clearly correlate to different properties than
CGVAE, thanks to the disentanglement enhancement.

Figure 2 allows digging deeper into the impact of a property of interest
by visualizing the change in the property over molecules generated when
a particular latent factor is varied in a range, and others are kept fixed. We
focus on one of our top models, D-MolVAE-VIB, and on PSA, which is
a crucial consideration when generating molecules, as it directly relates
to our ability to actually synthesize them in wet laboratories. We can
clearly see that basically only one factor is majorly related to PSA, thanks
to our disentanglement enhancement that strengthens the independence
among different factors and hence minimizes the number of different
factors correlated to a property (e.g., PSA). Figure 2 shows that one of
the latent factors impacts PSA, and this is more clearly visible on the QM9
and MOSES datasets.

4 Conclusion
The evaluation presented in this paper suggests that the proposed
disentanglement framework D-MolVAE is effective at generating valid,

novel, and unique small molecules and outperforms several state-of-
the-art generative models. This performance is due to the sequence
decoding process and, specifically, valence checking and the stop-checking
mechanism. Other graph-based generative models that lack this process
(for instance, GraphVAE) suffer in this respect and generate invalid
molecules. The variational inference in D-MolVAE also allows better
capturing the distribution of the input dataset and so sampling novel and
unique molecules from the learned distribution.

It is important to note that the loss functions in the models we propose
here effectively implement a trade-off between the disentanglement
enhancement and the reconstruction. The distributions of specific
properties (for instance, synthesis accessibility) show the exploration-
exploitation trade-off in the various disentangled models. Our analysis
shows that explicit disentanglement enforcement does not hurt the
proposed models; indeed, like CGVAE, the proposed models generate
novel and unique molecules and even surpass CGVAE on some of the
datasets; the disentangled factors provide an advantage. Moreover, the
proposed D-MolVAE models better capture the underlying graph statistics
and distributions of various biological properties. Our evaluation also
reveals that different types of disentangled models have different abilities.
In particular, the experiments suggest that D-MolVAE-VIB is a promising
model for exploring disentangled representations.

We consider the proposed work to be a first step to address
remaining challenges in small molecule generation. Beyond interpreting
the generation process, it is important to precisely control the properties
of generated molecules. The disentangled representation learning is this
paper falls under the umbrella of unsupervised learning. Therefore, specific
control and correspondence of latent factors to molecular properties of
interest is not expected to be strong. Our analysis shows that, in principle,
one can build over the models proposed here for such precise control.
Ideally, given specific, target values for several properties of interest, one
could decode back the latent variables into a molecule that achieves the
target property values. Our future work will address such models.

We also note that current models, including those proposed and
evaluated this paper, are only concerned with global properties of
molecules (or their graph representations), such as ClogP, drug-likeness,
and others. Preserving local properties of an atom or a cluster of atoms
(e.g., an aromatic hydrocarbon) has not been explored so far. Doing
both can be helpful in designing novel molecules while improving our
understanding of the contribution of each element in the overall molecular
properties of interest. We caution, however, that supervised representation
learning, while useful in many specific applications, may also bias towards
a known, target set of molecular properties and miss possibly interesting
new discoveries. In our future work we hope to advance both unsupervised
and supervised representation learning in small molecule generation.
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Supplementary Data

Architecture of D-MolVAE

A preliminary version of our graph-based VAE framework D-MolVAE has appeared in our recent workshop paper (Du et al., 2020). Here, in addition to
implementing the trade-off between disentanglement and reconstruction loss in various ways, thus obtaining the different models described above, we also
extend the framework to handle variable-size graphs (thus, variable-size molecules). For the sake of completeness, we summarize the entire framework
for the interested reader.

D-MolVAE is its essence a VAE, with an encoder and decoder. As in a VAE, the encoder learns the mean and standard deviation of the latent
representation of the input; the decoder decodes the sampled latent representation to reconstruct the input. In D-MolVAE, the graph encoder models the
prior distributions qϕ(Z|G) by generating the mean µ and standard variation σ of the learned distribution. The graph decoder models pθ(G|Z). Graphs
are generated by sampling the inferred mean µ and standard derivation σ of the learned distribution. Each component is described in detail below.

Molecule Encoder
To model the prior distributions qϕ(Z|G), the D-MolVAE encoder is constructed based on a graph neural network (GNN) (Guo et al., 2019). The GNN
embeds each vertex in an input graph G into the L-dimension latent space following the distribution qϕ(Z|G) parameterized by mean µi and standard
deviation vectors σi for each vertex vi, which is the output of the GNN. As a result, by sampling from the modeled distribution, Z = {Z1, ..., ZN} are
the variables containing the representation vectors for all the vertices.

Molecule Decoder
The molecule decoder models the distribution pθ(G|Z) by generating the molecule graph G conditioned on the latent representation variables Z sampled
from the distribution learned by the encoder. The process proceeds in an auto-regressive style. In each step, a focus vertex is selected to be visited, and
related edges are then generated. The vertices are ordered via breadth-first traversal.

Specifically, the molecule decoder contains three steps, vertex initialization, vertex update, and edge selection and labeling.

Vertex Initialization Here is where we can handle variable-size graphs. We set N as the upper bound on the number of vertices in a generated graph.
Briefly, an initial state h

(t=0)
i is assigned to each vertex vi in a set of initially-unconnected vertices. Specifically, h(t=0)

i is the concatenation [Zi, τi],
where τi is a one-hot vector indicating atom type. τi is derived from Zi by sampling from the softmax output of a learned mapping τi ∼ f(Zi), where
f(·) is a multi-layer perception (MLP) (Hassoun et al., 1995). From these vertex-level states, one can then calculate global representations H(t), which
is the average representation of vertices in the connected component at generation step t. In addition to N working vertices, a special “stop vertex” is
initialized to a learned representation hend for the purpose of termination, detailed as below.

Edge Selection and Labeling At each step t, a focus vertex vi is picked from the queue of vertices. An edges ei,j is selected from vertex vi to vertex vj

with label Ei,j . Specifically, for each non-focus vertex vj , one constructs a feature vector η(t)i,j = [h
(t)
i , h

(t)
j , di,j , H(t), H(0)], where di,j is the graph

distance (the path) between two vertices vi, vj . These representations are utilized to produce a distribution over candidate edges, as follows:

p(ei,j , Ei,j |η
(t)
i,j ) = p(Ei,j |η

(t)
i,j , ei,j) · p(ei,j |η

(t)
i,j ) (19)

The parameters of the distribution are calculated as softmax outputs from neural networks; i.e., fvertex(·) which determines the target vertex for an
edge, and fbond(·) which determines the type of the edge:

p(ei,j |η
(t)
i,j ) =

M
(t)
i,j exp(fvertex(η

(t)
i,j ))∑N

k M
(t)
i,kexp(fvertex(η

(t)
i,k))

, (20)

p(Ei,j = l|η(t)i,j ) =
m

(t)
i,j,lexp([fbond(η

(t)
i,j )]l)∑L

u m
(t)
i,j,uexp([fbond(η

(t)
i,j )]u)

, (21)

In the above, l refers to one type of the edge, and [fbond(η
(t)
i,j )]u refers to the u-th entry in the output of function fbond(·). M

(t)
i,j and m

(t)
i,j,l are binary

masks that forbid edges that violate constraints on constructing syntactically-valid molecules. New edges are sampled one by one from the above learned
distributions. Any vertices that are connected to the graph for the first time during this edge selection are added to the vertex queue.

Vertex Update Whenever we obtain a new graph G(t+1) at step t, the previous vertex states h(t)
i is discarded, and new vertex representations h(t+1)

i are
calculated for each vertex by taking their (possibly-changed) neighborhood into account. To this end, a standard gated graph neural network (GGNN) is
utilized through S steps, defined as a recurrent operation over messages r(s)i as in:

r
(s+1)
i = GRU [r

(s)
i ,

∑
j↔i

MLP(r
(s)
j )] (22)

h
(t+1)
i = r

(S)
i , (23)

In the above, r(0)i = h
(0)
i , and the sum runs over all edges in the current graph. Since h(t+1)

i is computed from h
(0)
i rather than h

(t)
i , the representation

h
(t+1)
i is independent of the generation history of G(t+1).
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Termination In the edge generation process of each vertex, the edges to a vertex vi are kept added until an edge to the stop vertex is selected. When that
happens, the "focus" then moves to vertex vi, vi is regarded as "closed" vertex. The next focus vertex is then selected from the focus queue. In this way,
a single connected component is grown in a breadth-first manner. The vertex and edge generations continue until the vertex queue is empty. There may
be unconnected vertices left at the end; these are discarded from the final graphs.

Valency Masking To construct syntactically-valid molecules, we additionally utilize a valency mask. Namely, the valency of an atom indicates the number
of bonds that an atom can make in a physically-realistic molecule. In the molecule graph, each atom type has a fixed valency. For example, vertex type
“H” (a hydrogen atom) has a valency of 1, and vertex type “O” (an oxygen atom) has a valency of 2. Throughout the generation process, two types of
masks M(t)

i,j and m
(t)
i,j,l are used to guarantee that the bonds bi of each atom never exceed the atom valency b∗i . After the generation is finished, if bi < b∗i ,

b∗i − bi hydrogen atoms are added to be linked to atom vi. As a result, the generated molecules are always syntactically-valid. More specifically, M(t)
i,j

also handles avoidance of edge duplication and self loops, and is defined as:

M
(t)
i,j = I(bi < b∗i )× I(bj < b∗j )× I(ei,j not exist)× I(i ̸= j)

×I(vi is focus) (24)

In the above, I(·) is an indicator function; as a special case, connections to the stop vertex are always unmasked. Further, when selecting the label
for a chosen edge, we again avoid violating the valency constraint by defining m

(t)
i,j,l = M

(t)
i,j × I(b∗j − bj < l), where l refer to the bond type, and

l = 1, 2, 3 indicates single, double, and triple bond types, respectively.

Comparative Analysis

The 5 proposed D-MolVAE models are pitched against 9 state-of-the-art deep generative models for molecule generation: ChemVAE (Gómez-
Bombarelli et al., 2018), GrammarVAE (Kusner et al., 2017), GraphVAE (Simonovsky and Komodakis, 2018), GraphGMG (Li et al., 2018),
SMILES-LSTM (Sundermeyer et al., 2012), GraphNVP (Madhawa et al., 2019), GRF (Honda et al., 2019), GraphAF (Shi et al., 2019), and CGVAE (Liu
et al., 2018b).

ChemVAE (Gómez-Bombarelli et al., 2018) is a generative model that converts discrete representations of molecules to and from a multidimensional
continuous representation. GrammarVAE (Kusner et al., 2017) enforces syntactic and semantic constraints over SMILES strings via context free and
attribute grammars. GraphVAE (Simonovsky and Komodakis, 2018) is a generic deep generative model for graph generation. GraphGMG (Li et al.,
2018) is a deep auto-regressive graph model that generates the vertices of a graph sequentially. SMILES-LSTM (Sundermeyer et al., 2012) is an LSTM
model that utilizes the SMILES representation. GraphNVP (Madhawa et al., 2019) introduces self-normalizing flow in a molecule generative model.
GRF (Honda et al., 2019) and GraphAF (Shi et al., 2019) employ an auto-regressive generation process. In CGVAE (Liu et al., 2018b), both the encoder
and decoder are graph-structured and enforce a validity constraint. We note that CGVAE shares a similar architecture with the proposed D-MolVAE
models and also utilizes β − V AE. We utilize published default settings for each of these models.

Distribution Distance Metrics and Molecular Properties

A distribution of a variable of interest is computed from the training and the generated dataset to compare these datasets in terms of distances of distributions.
Specifically, distributions are compared via MMD or KLD. When utilizing MMD, we focus on variables that are routinely used to summarize distributions
of graphs (You et al., 2018; Liu et al., 2018a), such as node degree, clustering coefficient, or average orbit count. The latter counts the number of 4-orbits
in a graph. When utilizing KLD, we focus on benchmark molecular properties in cheminformatics, such as cLogP, clogS, PSA, rPSA, Drug-likeness,
and SA Score 2 3. Briefly, cLogP stands for computationally-predicted lipophilicity, most commonly referred to as logP. This represents the ratio at
equilibrium of the concentration of a compound between two phases, an oil and a liquid phase. Lipophilicity is an important physicochemical parameter
when developing new drugs, because it influences various pharmacokinetic properties, such as absorption, distribution, permeability, and routes of drugs
clearance. cLogS, which stands for computationally-predicted logS, is directly related to the water solubility of a drug and is defined as a common
solubility unit corresponding to the 10-based logarithm of the solubility of a molecule measured in mol/L. The polar surface area (PSA) and relative
PSA (rPSA) are important evaluators in medicinal chemistry of a drug’s ability to permeate cells. Drug-likeness, computed with RDKIT via QED, which
stands for quantitative estimation of drug-likeness, is calculated as a geometric mean over individual descriptors that combine the desirability of a new
drug over the underlying distribution of molecular properties in known drugs. SA Score stands for synthetic accessibility score and estimates the ease of
synthesis of a drug.

2 RDKit: Open-source cheminformatics; http://www.rdkit.org
3 DataWarrior: Open-source molecules; https://openmolecules.org/datawarrior/
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Correlation of Molecular Properties

Fig. 1. Correlation heatmap between molecular properties is calculated over the QM9 training dataset. Pearson’s correlation is used.
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Visual Comparison of Learned to Input Distributions

CGVAE

clogP clogS

PSA rPSA

Drug-likeness SA

Fig. 2. Comparison of the distribution of cLogP, cLogS, PSA, rPSA, and drug-likeness in the generated versus the training dataset for CGVAE. Results are better seen in color.
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D-MolVAE-V

clogP clogS

PSA rPSA

Drug-likeness SA

Fig. 3. Comparison of the distribution of cLogP, cLogS, PSA, rPSA, and drug-likeness in the generated versus the training dataset for D-MolVAE-V. Results are better seen in color.
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D-MolVAE-β

clogP clogS

PSA rPSA

Drug-likeness SA

Fig. 4. Comparison of the distribution of cLogP, cLogS, PSA, rPSA, and drug-likeness in the generated versus the training dataset for D-MolVAE-β. Results are better seen in color.
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D-MolVAE-DIP-I

clogP clogS

PSA rPSA

Drug-likeness SA

Fig. 5. Comparison of the distribution of cLogP, cLogS, PSA, rPSA, and drug-likeness in the generated versus the training dataset for D-MolVAE-DIP-I. Results are better seen in color.
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D-MolVAE-DIP-II

clogP clogS

PSA rPSA

Drug-likeness SA

Fig. 6. Comparison of the distribution of cLogP, cLogS, PSA, rPSA, and drug-likeness in the generated versus the training dataset for D-MolVAE-DIP-II. Results are better seen in color.
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D-MolVAE-VIB

clogP clogS

PSA rPSA

Drug-likeness SA

Fig. 7. Comparison of the distribution of cLogP, cLogS, PSA, rPSA, and drug-likeness in the generated versus the training dataset for D-MolVAE-VIB. Results are better seen in color.



10 Yuanqi et al.

Visualization of Selected Generated Molecules

We show some molecules generated from eac of the models trained on the QM9 dataset.

CGVAE

Mol-V

Mol-beta

Mol-DIP-I

Mol-DIP-II

Mol-VIB

QM9

Fig. 8. Molecules randomly selected from the QM9 dataset are shown in the top row. The next row shows molecules sampled at random over those generated by CGVAE, MolVAE-V,
MolVAE-β, MolVAE-DIP-I, MolVAE-DIP-II and MolVAE-VIB, repectively.
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Correlation of Disentangled Factors with Molecular Properties
The mutual information is calculated between each of the disentangled factors learned by a model and the molecular properties computed on the molecules
generated by the model.

CGVAE

QM9 ZINC

MOSES CHEMBL

Fig. 9. Heatmaps visualize the mutual information between each of the latent factors learned by CGVAE and the molecular properties computed on molecules generated by the model.
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D-MolVAE-V

QM9 ZINC

MOSES CHEMBL

Fig. 10. Heatmaps visualize the mutual information between each of the latent factors learned by D-MolVAE-V and the molecular properties computed on molecules generated by the
model.
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D-MolVAE-β

QM9 ZINC

MOSES CHEMBL

Fig. 11. Heatmaps visualize the mutual information between each of the latent factors learned by D-MolVAE-β and the molecular properties computed on molecules generated by the
model.



14 Yuanqi et al.

D-MolVAE-DIP-I

QM9 ZINC

MOSES CHEMBL

Fig. 12. Heatmaps visualize the mutual information between each of the latent factors learned by D-MolVAE-DIP-I and the molecular properties computed on molecules generated by the
model.
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D-MolVAE-DIP-II

QM9 ZINC

MOSES CHEMBL

Fig. 13. Heatmaps visualize the mutual information between each of the latent factors learned by D-MolVAE-DIP-II and the molecular properties computed on molecules generated by the
model.
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D-MolVAE-VIB

QM9 ZINC

MOSES CHEMBL

Fig. 14. Heatmaps visualize the mutual information between each of the latent factors learned by D-MolVAE-VIB and the molecular properties computed on molecules generated by the
model.


